

0-7803-8367-2/04/$20.00 ©2004 IEEE

Abstract

 A cracker who gains access to a computer system will
normally install some method, for use at a later time that
allows the cracker to come back onto the system with root
privilege. One method that a cracker may use is the
installation of a rootkit on the compromised system. A
kernel level rootkit will modify the underlying kernel of
the installed operating system. The kernel controls
everything that happens on a computer. We are
developing a standardized methodology to characterize
rootkits. The ability to characterize rootkits will provide
system administrators, researchers, and security
personnel with the information necessary in order to take
the best possible recovery actions. This may also help to
detect and fingerprint additional instances and prevent
further security instances involving rootkits. We propose
new methods for characterizing kernel level rootkits.
These methods may also be used in the detection of kernel
rootkits.

Index Terms— Computer crime, cracking, hacking,
information assurance, rootkits, system compromise,
trojan.

1. INTRODUCTION

1.1 Definition of a Rootkit

A rootkit can be considered as a “Trojan Horse”

introduced into a computer operating system. According
to Thimbleby, Anderson, and Cairns, there are four
categories of trojans. They are: direct masquerades, i.e.
pretending to be normal programs; simple masquerades,
i.e. not masquerading as existing programs but
masquerading as possible programs that are other than
what they really are; slip masquerades, i.e. programs with

names approximating existing names; and environmental
masquerades, i.e. already running programs not easily
identified by the user [1]. We are primarily interested in
masquerades as well as environmental masquerades. A
kernel level rootkit may have characteristics of direct
masquerades in that it will consist of malicious system
calls pretending to be normal system calls. It may also
have characteristics of simple masquerades in that it can
masquerade as system calls other than what they really
are. Kernel level rootkits may be considered
environmental masquerades in that they are already
running and cannot be easily identified by computer users.

A cracker (we refer to anyone who attempts to
compromise a computer system as a cracker as opposed to
a hacker) must already have root level access on a
computer system before they can install a rootkit.
Rootkits do not allow a cracker to gain access to a system.
Instead, they enable the cracker to get back into the
system with root level permissions [2]. Once a cracker
has gained root level access on a system, a trojan program
that can masquerade as an existing system function or
capability can then be installed on the compromised
computer system.

Rootkits are a phenomenon that has recently drawn
attention. Prior to rootkits, system utilities could be
trusted to provide a system administrator with accurate
information. Modern crackers have developed methods to
conceal their activities and programs to assist in this
concealment [3]. Rootkits are a serious threat to the
security of a networked computer system.

The vulnerabilities that exist in modern operating
systems as well the proliferation of exploits that allow
crackers to gain root access on networked computer
systems provide crackers with the ability to install
rootkits. System administrators need to be aware of the
threats that their computers face from rootkits as well as
the ability to recognize if a particular rootkit has been
installed on their computer system.

A Methodology to Characterize Kernel Level Rootkit Exploits that Overwrite
the System Call Table

John G. Levine, Julian B. Grizzard, Phillip W. Hutto* , Henry L. Owen
School of Electrical and Computer Engineering

* College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0250

1.2 Kernel Level Rootkits

Kernel level rootkits are one of the most recent
developments in the area of computer system exploitation
by the cracker community [4]. The kernel is recognized
as the most fundamental part of most modern operating
systems. The kernel can be considered the lowest level in
the operating system. The file system, scheduling of the
CPU, management of memory, and system call related
operating system functions are all provided by the kernel
[5]. Unlike a traditional binary rootkit that modifies
critical system level programs, a kernel level rootkit will
replace or modify the kernel itself. This allows the
cracker to control the system without others being aware
of this. Kernel level rootkits usually cannot be detected
by traditional means available to a system administrator.

The kernel controls any application that is running on
the computer. If the application wants to access some
system resource, such as reading to or writing from the
disk, then the application must request this service from
the kernel. This is accomplished through the use of a
system call, or sys_call. The application performs a
sys_call passing control to the kernel which performs the
requested work and provides the output to the requesting
application. A kernel level rootkit modifies these system
calls to perform some type of malicious activity. A kernel
level rootkit can use the capability of loadable kernel
modules (LKMs). LKMs are a feature that is available in
Linux. A kernel rootkit can use a custom kernel module
to modify a sys_call to hide files and processes as well as
provide backdoors for a cracker to return to the system.
These types of rootkits usually modify the sys_call_table.
They replace the addresses of the legitimate sys_calls with
the addresses of the sys_calls that are to be installed by the
cracker’s LKM. The requested sys_call can then be
redirected away from the legitimate sys_call to the kernel
level rootkit’s replacement sys_call. Loadable Kernel
Modules are available in various UNIX based operating
systems. Figure 1 show the results of a kernel rootkit like
knark on the system call table within kernel memory.

Figure 1 - Redirected System Call Table

2 EXISTING METHODOLOGIES TO
DETECT ROOTKITS

Current tools and methodologies exist to detect systems

compromised by rootkits. These methodologies include
both manual and automated measures. Examples include
comparison of cryptographic checksums against known
good system installations, checking of various system
directories, and examination of files for suspicious
signatures. We will briefly examine some of these
methodologies and identify their shortcomings with
respect to detecting kernel level rootkits. These methods
are limited in that they only detect the presence of a
rootkit in most cases without characterizing the specific
rootkit that is installed on the target system. In other
words, these methods can tell you that you are infected
with a rootkit without identifying the specific rootkit. We
believe that it will benefit network security personnel to
know the specific rootkit that they are dealing with on the
infected system.

2.1 Tools Available to Detect Rootkit Exploits

There are tools available for System administrators to
detect if a system has been compromised. The two
primary means of detecting a compromised system are to
conduct signature analysis on the system or to compare
cryptographic checksums of system files with known good
cryptographic checksums. While both of these methods
are able to detect exploitation by traditional or binary level
rootkits they may not work in the detection of kernel level
rootkits.

There is a free program that checks a system for
rootkits. This program is known as chkrootkit [6]. This
program runs a shell script that checks specific system
binaries to determine if a rootkit has been installed on the
system. This program also checks to see if the network
interfaces on the computer have been set to the
promiscuous mode, which is a common ploy used by
crackers in order to capture network traffic. In addition,
chkrootkit looks for the creation of certain directories as a
result of a system being infected with a rootkit exploit.
For example, The knark kernel rootkit creates a directory
called knark in the /proc/ directory. A system infected
with the knark kernel level rootkit can be detected by
chkrootkit because of the presence of this directory. We
speculate that the developer of knark specifically chose
the /proc/ directory for the sub-directory that is to be
created. The /proc/ directory is one that is constantly
changing during the operation of the computer. Any new
process that is started will have a separate directory

created here. Because of this, the /proc/ directory is
normally not chosen as a directory that will be checked
with a cryptographic signature. This hidden directory is
created by knark and the chkrootkit program looks for this
specific directory. chkrootkit also checks the system
logs. chkrootkit is signature based. Therefore the
signature must be known in order to detect if a rootkit has
been installed on a system. The code in the chkrootkit
script file that is used to detect an infection by knark is
shown in Figure 2.

knark LKM
if [-d /proc/knark]; then
 echo “Warning:Knark LKM installed”
fi

Figure 2 - chkrootkit code to detect knark lkm

We find it unusual that the knark rootkit does not use its
directory hiding capability to hide this directory. The
chkrootkit check can be defeated if this directory is
renamed to something besides /proc/knark.

Programs such as chkrootkit may not detect new
rootkits or modifications to existing rootkits.

2.2 Running a cryptographic checksum/file
integrity checker program

A cryptographic checksum program, otherwise known as
a file integrity checker program, can be run on the
computer system in question. There are several host
based IDS tools that look at changes to the system files.
These programs take a snapshot of the trusted file system
state and use this snapshot as a basis for future scans.
This snapshot is normally based on calculating a
cryptographic checksum of the files that are to be
analyzed in the future.

These types of programs may not be able to detect
Kernel Level Rootkits at the present time. Kernel level
rootkits operate at a lower level than binary or application
level rootkits. Kernel level rootkits do not need to change
any system files on the target computer. Instead, they can
modify the kernel code in system memory. As a result,
the cryptographic checksums of the system files will not
change, even after a system has been infected with a
kernel level rootkit. The kernel level rootkit is able to
intercept system calls at the kernel level and compromise
the operations of the target computer without changing
any system files [7]. Because of this occurring at the
kernel level, a file integrity checker program will not
detect that the system has been infected even after a kernel
level rootkit has been installed on the system. It has been
proposed by Dino Dai Zovi of Sandia labs that all kernel

modules be cryptographically signed to ensure that only
trusted code will run at the kernel level [8].

Other researchers are also looking at using
cryptographic checksums to maintain kernel integrity.
The StMichael Project has developed a kernel module that
produces a cryptographic checksum of the kernel and uses
this checksum in order to detect if the kernel is
compromised [9]. Cryptographically signed kernels and
checksums are an area of research that warrants further
investigation from a security aspect. However, these
methodologies only detect that the kernel may have been
compromised without identifying the type or nature of the
compromise.

2.3 The kern_check program

Samhain Labs [10] has developed a small command-
line utility to detect the presence of a kernel level rootkit.
It may be possible to detect the presence of a kernel level
rootkit by comparing the sys_call addresses in the current
sys_call_table with the original map of kernel symbols
that is created by Linux when the system is compiled. A
difference between these two tables will indicate that
something, most likely a kernel level rootkit, has modified
the sys_call_table [11]. It must be noted that each new
installation of the kernel as well as the loading of a kernel
module will result in a new map of kernel symbols.
Figure 3 shows the output of running the kern_check
program on a system infected with a kernel level rootkit.
This program compares the sys_call with the one stored in
a system file (/boot/System.map).

Figure 3 - kern_check output of knarked system

The output indicates that the addresses of eight
sys_calls currently listed in the sys_call_table do not
match the addresses for those sys_calls in the original map
of the kernel symbols. This map of kernel systems is
available on the system as /boot/System.map. We have

conducted an in-depth analysis of how the knark kernel
level rootkit modifies these system calls as part of our
research, this analysis is available at [15]. It is
theoretically possible for another kernel level rootkit to
change the same eight system calls. At present, there is no
method of determining which kernel level rootkit has
changed these system calls.

3 CHARACTERIZING KERNEL LEVEL
ROOTKITS

We have looked at various programs that currently exist

to detect rootkits. These programs may indicate that
some type of rootkit is installed on the target system but in
most cases they fail to indicate the particular rootkit that is
installed. We have developed a methodology that will
help to characterize a kernel level rootkits that overwrites
the System Call Table and present this methodology. This
methodology will also work to detect the presence of
Kernel Level Rootkits that modify specific system call
code without changing the System Call Table.

3.1 Archiving the compromised System Call
code from kernel space.

Our methodology depends on the ability to archive a
copy of the system call code that currently exists in kernel
memory for characterization analysis. It is this archived
code that we propose to use to be able to characterize
kernel rootkit exploits. We have developed a C program
that can copy the system call code that is referenced by a
start and end address and write the executable object code
to a file for future reference. We feel that this is
significant because it allows the analyst to be able to
retrieve of the code that is currently running in the system
kernel. Further, some types of kernel level rootkits such
as knark do not remain resident in memory after the
system is rebooted. Our program allows for a copy of
any suspicious system calls to be copied offline for follow
on analysis prior to rebooting the system.

This program that we have developed, called ktext, is
listed in the appendix and is available at the website that
we have previously referenced [15]. We have tested this
program in the following manner. We installed several
kernel rootkits on several target systems. We then ran the
kern_check program on these systems. With the knark
kernel rootkit, the kern_check program informed us that
eight system calls were being redirected. The kern_check
program also indicated the address within kernel space of
these new redirected system calls (see figure 3). We then
used our program to make a copy of the system calls that

were indicated as having been redirected. Our analysis of
the source code used to create this rootkit indicated that
the new redirected system calls were being written
sequentially into kernel memory. This may not always be
the case and it may be necessary to conduct an analysis of
the object code to identify start and end address of the
individual system calls.

We then rebooted this system and checked the system
with kern_check. The kern_check program indicated that
no system calls were being redirected on the target
system. We then reinstalled the knark kernel rootkit via
its loadable kernel module. A subsequent validation by
the kern_check program indicates that the system is once
again compromised by the knark program. The new knark
system calls are now located at different addresses within
the kernel memory, as indicated by the output of the
kern_check program. The new instances of the eight
modified system calls appear to be the same size as the
system calls from the previous knark installation. We
then used these new addresses to make a subsequent copy
of the system calls for comparison against our previously
archived version of this compromised system call. A
comparison indicated that the files that we extracted are
identical. This check was only a proof of concept test to
determine if we could extract the system call code from
kernel memory for comparison. We have observed
similar results for the other rootkits that we analyzed.

Other tools make copies of kernel code in order to
detect if the kernel had been compromised. The Samhain
tool, developed by Samhain Labs, has the ability to make
a copy of the first eight bytes of each system call in order
to detect if a jump has been inserted into the start of the
original system call code [11]. The Samhain tool is a
“whitehat” kernel level rootkit that is installed by the
system administrator. This tool will only tell you that your
kernel has been compromised but it will not identify the
compromising rootkit. The previously mentioned
StMichael project will also modify the underlying kernel
of the system that it is installed on. Our methodology will
not modify the underlying kernel and will make a copy of
the entire system call for reference and analysis. Our
method will provide for a baseline to compare against
subsequent rootkits in order to characterize the rootkit.

The archived files can be examined with a tool such as
bvi (binary visual editor) which is available on the Internet
[12]. The output of bvi is the addresses of the data
relative to the beginning of the file (far left), the actual
data in hexadecimal notation (center), and the data in
ASCII format (far right) as indicated in Figure 4. One can
search within the file hexadecimal notation for the start
and end of each system call by looking for the individual
opcodes for pushing and popping the registers (each

system call is a separate C code routine that will push and
pop values on to the stack. You can also identify the end
of each system call routine by looking for the one byte
return opcode (ret – C3 in the Intel x86 architecture [13]).

Figure 4 - bvi analysis of getdents system call

Figure 4 showed us the bvi output for the
knark_getdents system call that replaces the original
sys_getdents system call. This system call is used by the
kernel to output the contents of a directory. Kernel level
rootkits will compromise this system call in order to hide
files and directories on the target system.

Analysis can be greatly simplified if the LKM code that
is used to install the kernel rootkit is still available on the
target system. This LKM code will most likely still exist
as an object file (.o extension). It this file is available, it
can be loaded into a program such as gdb (The GNU
Debugger, available with most Linux and Unix
distributions) in order to be disassembled. Each system
call can be disassembled using the disass <sys_call name>
command. What is significant to note about the output of
this command is that there is a mapping to the output of
the bvi program.

There are 256 bytes of output displayed as hexadecimal
opcode in the bvi screen. The second to last byte is 89,
which is the opcode for the move instruction (MOV) [13].
This matches up with the last instruction displayed in
Figure 5, which is the output from the gdb program. The
third to last symbol that is displayed by the bvi output is
the C3 opcode. The C3 opcode is the return (RET)
command [13]. Each symbol call should have this
command near the end of its associated opcode. Even if
the LKM opcode is not available, the approximate end of
each system call can be found by locating the C3 opcode.
A system call should only contain one return statement.
If the LKM for the rootkit is available, then it is possible
to do a side by side comparison of the bvi output to the
gdb output to analyze the system call. In any case, we

believe that each particular rootkit should have a
consistent implementation of its replacement system calls
which can be used to classify that particular rootkit. Our
research thus far has proved this to be true and we will
continue to research this area.

Figure 5 - gdb output of getdents system call

To summarize the steps to our methodology:

1. Identify system calls that have changed.
2. Determine the size to copy of each system call
3. Conduct a byte by byte analysis to disassembly this

copied code
4. Archive actual compromised system call

code/checksum for future comparison

3.2 Using Archived System Calls to detect a
new class of system compromise

At present, kernel level rootkits compromise a system
in one of two methods. The first method is to overwrite
addresses in the system call table with the address of the
malicious system call. The second method is to create an
entirely new system call table within kernel space and
redirect all system calls to this new table which contains
the malicious system call addresses. Currently, there are
no kernel level rootkits that attempt to compromise a
system by overwriting the system call instructions with
malicious code [14]. This would be very difficult to
accomplish do to the fact that race conditions might occur
while trying to overwrite the system calls. However it
may be possible.

We propose that an archived copy of each system call
can be produced based on the methodology that we have
previously presented. The addresses of the system calls
are already available within the /boot/System.map file
(available on the Linux Operating System). A

cryptographic checksum of these system calls can then be
produced for future comparison against the system to
ensure that the system calls have not been compromised.
These archived system calls could also be used as baseline
for further investigation.

4 CONCLUSION

We have presented a methodology to classify kernel
level rootkits exploits that overwrite the system call table
within this paper. Two rootkits that have the same
implementation of a compromised system call are the
same rootkits. A rootkit that has elements of some
previously characterized rootkit is a modification and a
rootkit that has entirely new characteristics is new.

We demonstrated the application of this methodology
against a particular class of kernel rootkit exploits. This
can help to generate rootkit signatures to aid in the
detection of these types of exploits. This methodology
will allow system administrators and the security
community to better understand kernel level rootkits in
order to plan and react accordingly.

The adore rootkit is an example of this particular class
of kernel level rootkit. In 2001 there were 1798 reported
incidents of the adore rootkit in the United States [16]. A
new version of this rootkit was recently released [17].

APPENDIX
The ktext program:

/* compile & usage statement */

/* GPL License */

#include <stdio.h>
#include <sys/mman.h>
#include <syscall.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

extern int errno;

int main(int argc, char **argv) {
char * filename;
char * file;

/*usage first argument: output
filename,second argument: start
address,third argument: end address
of data to copy from /dev/kmem */

char * ktext;
int fp, fp_out;
long int sj_s_text, sj_e_text;
ulong size;
int error = 0;
file = argv[1];

sj_s_text = strtoul(argv[2], NULL, 0);
sj_e_text = strtoul(argv[3], NULL, 0);

size = sj_e_text - sj_s_text;
printf("sj_s_text: %x sj_e_text: %x
size: %x\n", sj_s_text, sj_e_text,
size);

fp = open("/dev/kmem", O_RDWR, 0);
printf("fp - open /dev/kmem: %d\n",fp);

ktext = malloc(size);
printf("ktext - malloc: %d\n", ktext);

error = lseek(fp, sj_s_text, SEEK_SET);
printf("error.1 - lseek: %d\n", error);
perror("lseek");

error = read(fp, ktext, size);
printf("error1 -fread ktext : %d\n",
error);

fp_out = creat(file, O_RDWR);
printf("fp_out - fopen output: %d\n",
fp_out);

error = write(fp_out, ktext, size);
printf("error - fwrite ktext: %d\n",
error);

close(fp_out);
close(fp);
}

REFERENCES
[1] H. Thimbleby, S. Anderson, P. Cairns, “A Framework

for Modeling Trojans and Computer Virus Infections,”
The Computer Journal, vol. 41, no.7 pp. 444-458, 1998.

[2] E. Cole, Hackers Beware, Indianapolis, In: New Riders,
2002, pp. 548-553.

[3] D. Dettrich, (2002, 5 JAN) “Root Kits” and hiding
files/directories/processes after a break-in, [Online].
Available: http://staff. washington.
edu/dittrich/misc/faqs/rootkits.faq

[4] E. Skoudis, Counter Hack, Upper Saddle River, NJ:
Prentice Hall PTR: 2002.

[5] A. Silberschatz, P. Galvin, G. Gagne, Applied Operating
System Concepts, New York, NY: John Wiley & Sons:
2003, p. 626.

http://staff.washington. edu/dittrich/misc/faqs/rootkits.faq
http://staff.washington. edu/dittrich/misc/faqs/rootkits.faq
http://www.sans.org/rr/papers/index.php?id=449
http://sourceforge.net/projects/stjude
http://la-samha.de/library/lkm.html

[6] N. Murilo, K. Steding-Jones, “chkrootkit V. 0.36”
www.chkrootkit .org.

[7] E. Cole, Hackers Beware, p. 550
[8] http://www.sans.org/rr/papers/index.php?id=449, NOV

2003
[9] http://sourceforge.net/projects/stjude, AUG 2003
[10] Samhain Labs, Loadable Kernel Module Rootkits,

http://la-samha.de/library/lkm.html, July 2002.
[11] Samhain Labs http://la-samha.de/samhain, NOV 2003.
[12] http://bvi.sourceforge.net/, NOV 2002.
[13] http://www.intel.com/design/pentium4/manuals/245471.h

tm, NOV 2003.
[14] http://la-samhna.de/library/rootkits/basics.html NOV

2003.
[15] http://users.ece.gatech.edu/~owen/Researh

/Rootkit/Rootkit.htm
[16] http://archives.neohapsis.com/archives/incidents/2001-

04/0056.html, JAN 2004.
[17] http://archives.neohapsis.com/archives/incidents/2001-

04/0056.html, JAN 2004.

http://la-samha.de/library/lkm.html
http://bvi.sourceforge.net/
http://www.intel.com/design/pentium4/manuals/245471.htm
http://www.intel.com/design/pentium4/manuals/245471.htm
http://la-samhna.de/library/rootkits/basics.html NOV 2003
http://la-samhna.de/library/rootkits/basics.html NOV 2003
http://users.ece.gatech .edu/
http://archives.neohapsis.com/archives/incidents/2001-04/0056.html
http://archives.neohapsis.com/archives/incidents/2001-04/0056.html
http://archives.neohapsis.com/archives/incidents/2001-04/0056.html
http://archives.neohapsis.com/archives/incidents/2001-04/0056.html

	INTRODUCTION
	Definition of a Rootkit
	Kernel Level Rootkits

	EXISTING METHODOLOGIES TO DETECT ROOTKITS
	Tools Available to Detect Rootkit Exploits
	Running a cryptographic checksum/file integrity checker program
	The kern_check program

	characterizing Kernel Level Rootkits
	Archiving the compromised System Call code from kernel space.
	Using Archived System Calls to detect a new class of system compromise

	conclusion

