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Abstract 
 

 A cracker who gains access to a computer system will 
normally install some method, for use at a later time that 
allows the cracker to come back onto the system with root 
privilege.  One method that a cracker may use is the 
installation of a rootkit on the compromised system.  A 
kernel level rootkit will modify the underlying kernel of 
the installed operating system.  The kernel controls 
everything that happens on a computer.  We are 
developing a standardized methodology to characterize 
rootkits.  The ability to characterize rootkits will provide 
system administrators, researchers, and security 
personnel with the information necessary in order to take 
the best possible recovery actions. This may also help to 
detect and fingerprint additional instances and prevent 
further security instances involving rootkits.   We propose 
new methods for characterizing kernel level rootkits.  
These methods may also be used in the detection of kernel 
rootkits. 
 

Index Terms— Computer crime, cracking, hacking, 
information assurance, rootkits, system compromise, 
trojan. 

1.  INTRODUCTION 
 
1.1 Definition of a Rootkit 

 
A rootkit can be considered as a “Trojan Horse” 

introduced into a computer operating system.  According 
to Thimbleby, Anderson, and Cairns, there are four 
categories of trojans.  They are: direct masquerades, i.e. 
pretending to be normal programs; simple masquerades, 
i.e. not masquerading as existing programs but 
masquerading as possible programs that are other than 
what they really are; slip masquerades, i.e. programs with  
 

names approximating existing names; and environmental 
masquerades, i.e. already running programs not easily 
identified by the user [1].    We are primarily interested in  
masquerades as well as environmental masquerades.  A 
kernel level rootkit may have characteristics of direct 
masquerades in that it will consist of malicious system 
calls pretending to be normal system calls.  It may also 
have characteristics of simple masquerades in that it can 
masquerade as system calls other than what they really 
are.    Kernel level rootkits may be considered 
environmental masquerades in that they are already 
running and cannot be easily identified by computer users.   

A cracker (we refer to anyone who attempts to 
compromise a computer system as a cracker as opposed to 
a hacker) must already have root level access on a 
computer system before they can install a rootkit.  
Rootkits do not allow a cracker to gain access to a system.  
Instead, they enable the cracker to get back into the 
system with root level permissions [2].    Once a cracker 
has gained root level access on a system, a trojan program 
that can masquerade as an existing system function or 
capability can then be installed on the compromised 
computer system. 

Rootkits are a phenomenon that has recently drawn 
attention.  Prior to rootkits, system utilities could be 
trusted to provide a system administrator with accurate 
information.  Modern crackers have developed methods to 
conceal their activities and programs to assist in this 
concealment [3].  Rootkits are a serious threat to the 
security of a networked computer system. 

The vulnerabilities that exist in modern operating 
systems as well the proliferation of exploits that allow 
crackers to gain root access on networked computer 
systems provide crackers with the ability to install 
rootkits.  System administrators need to be aware of the 
threats that their computers face from rootkits as well as 
the ability to recognize if a particular rootkit has been 
installed on their computer system.   
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1.2 Kernel Level Rootkits 
 

Kernel level rootkits are one of the most recent 
developments in the area of computer system exploitation 
by the cracker community [4].    The kernel is recognized  
as the most fundamental part of most modern operating 
systems.   The kernel can be considered the lowest level in 
the operating system.  The file system, scheduling of the 
CPU, management of memory, and system call related 
operating system functions are all provided by the kernel 
[5].  Unlike a traditional binary rootkit that modifies 
critical system level programs, a kernel level rootkit will 
replace or modify the kernel itself.  This allows the 
cracker to control the system without others being aware 
of this.    Kernel level rootkits usually cannot be detected 
by traditional means available to a system administrator.   

The kernel controls any application that is running on 
the computer.  If the application wants to access some 
system resource, such as reading to or writing from the 
disk, then the application must request this service from 
the kernel.  This is accomplished through the use of a 
system call, or sys_call.  The application performs a 
sys_call passing control to the kernel which performs the 
requested work and provides the output to the requesting 
application.   A kernel level rootkit modifies these system 
calls to perform some type of malicious activity.  A kernel 
level rootkit can use the capability of loadable kernel 
modules (LKMs).  LKMs are a feature that is available in 
Linux.  A kernel rootkit can use a custom kernel module 
to modify a sys_call to hide files and processes as well as 
provide backdoors for a cracker to return to the system.  
These types of rootkits usually modify the sys_call_table.  
They replace the addresses of the legitimate sys_calls with 
the addresses of the sys_calls that are to be installed by the 
cracker’s LKM.   The requested sys_call can then be 
redirected away from the legitimate sys_call to the kernel 
level rootkit’s replacement sys_call.  Loadable Kernel 
Modules are available in various UNIX based operating 
systems.  Figure 1 show the results of a kernel rootkit like 
knark on the system call table within kernel memory. 

 

  
Figure 1 - Redirected System Call Table 

2 EXISTING METHODOLOGIES TO 
DETECT ROOTKITS 

 
Current tools and methodologies exist to detect systems 

compromised by rootkits.  These methodologies include 
both manual and automated measures.  Examples include 
comparison of cryptographic checksums against known 
good system installations, checking of various system 
directories, and examination of files for suspicious 
signatures.    We will briefly examine some of these 
methodologies and identify their shortcomings with 
respect to detecting kernel level rootkits.  These methods 
are limited in that they only detect the presence of a 
rootkit in most cases without characterizing the specific 
rootkit that is installed on the target system.  In other 
words, these methods can tell you that you are infected 
with a rootkit without identifying the specific rootkit.   We 
believe that it will benefit network security personnel to 
know the specific rootkit that they are dealing with on the 
infected system. 

 

2.1 Tools Available to Detect Rootkit Exploits 
 

There are tools available for System administrators to 
detect if a system has been compromised.  The two 
primary means of detecting a compromised system are to 
conduct signature analysis on the system or to compare 
cryptographic checksums of system files with known good 
cryptographic checksums.  While both of these methods 
are able to detect exploitation by traditional or binary level 
rootkits they may not work in the detection of kernel level 
rootkits.   

There is a free program that checks a system for 
rootkits.  This program is known as chkrootkit [6].  This 
program runs a shell script that checks specific system 
binaries to determine if a rootkit has been installed on the 
system.  This program also checks to see if the network 
interfaces on the computer have been set to the 
promiscuous mode, which is a common ploy used by 
crackers in order to capture network traffic.  In addition, 
chkrootkit looks for the creation of certain directories as a 
result of a system being infected with a rootkit exploit.  
For example, The knark kernel rootkit creates a directory 
called knark in the /proc/ directory.    A system infected 
with the knark kernel level rootkit can be detected by 
chkrootkit because of the presence of this directory.  We 
speculate that the developer of knark specifically chose 
the /proc/ directory for the sub-directory that is to be 
created.  The /proc/ directory is one that is constantly 
changing during the operation of the computer.  Any new 
process that is started will have a separate directory 



 
 

 

created here.  Because of this, the /proc/ directory is 
normally not chosen as a directory that will be checked 
with a cryptographic signature.  This hidden directory is 
created by knark and the chkrootkit program looks for this 
specific directory.   chkrootkit also checks the system 
logs.  chkrootkit is signature based.   Therefore the 
signature must be known in order to detect if a rootkit has 
been installed on a system.    The code in the chkrootkit 
script file that is used to detect an infection by knark is 
shown in Figure 2.   

 
## knark LKM 
if [ -d /proc/knark]; then 
 echo “Warning:Knark LKM installed” 
fi 

Figure 2 - chkrootkit code to detect knark lkm 

We find it unusual that the knark rootkit does not use its 
directory hiding capability to hide this directory.  The 
chkrootkit check can be defeated if this directory is 
renamed to something besides /proc/knark.   

Programs such as chkrootkit may not detect new 
rootkits or  modifications to existing rootkits.    

 

2.2 Running a cryptographic checksum/file 
integrity checker program 
 
A cryptographic checksum program, otherwise known as 
a file integrity checker program, can be run on the 
computer system in question.  There are several host 
based IDS tools that look at changes to the system files.  
These programs take a snapshot of the trusted file system 
state and use this snapshot as a basis for future scans.  
This snapshot is normally based on calculating a 
cryptographic checksum of the files that are to be 
analyzed in the future.   

These types of programs may  not be able to detect 
Kernel Level Rootkits at the present time.  Kernel level 
rootkits operate at a lower level than binary or application 
level rootkits.  Kernel level rootkits do not need to change 
any system files on the target computer.  Instead, they can 
modify the kernel code in system memory.  As a result, 
the cryptographic checksums of the system files will not 
change, even after a system has been infected with a 
kernel level rootkit.  The kernel level rootkit is able to 
intercept system calls at the kernel level and compromise 
the operations of the target computer without changing 
any system files [7].  Because of this occurring at the 
kernel level, a file integrity checker program will not 
detect that the system has been infected even after a kernel 
level rootkit has been installed on the system.   It has been 
proposed by Dino Dai Zovi of Sandia labs that all kernel 

modules be cryptographically signed to ensure that only 
trusted code will run at the kernel level [8].    

Other researchers are also looking at using 
cryptographic checksums to maintain kernel integrity.  
The StMichael Project has developed a kernel module that 
produces a cryptographic checksum of the kernel and uses 
this checksum in order to detect if the kernel is 
compromised [9].  Cryptographically signed kernels and 
checksums are an area of research that warrants further 
investigation from a security aspect.  However, these 
methodologies only detect that the kernel may have been 
compromised without identifying the type or nature of the 
compromise. 

 

2.3 The kern_check program 
 

Samhain Labs [10] has developed a small command-
line utility to detect the presence of a kernel level rootkit.    
It may be possible to detect the presence of a kernel level 
rootkit by comparing the sys_call addresses in the current 
sys_call_table with the original map of kernel symbols 
that is created by Linux when the system is compiled.  A 
difference between these two tables will indicate that 
something, most likely a kernel level rootkit, has modified 
the sys_call_table [11].    It must be noted that each new 
installation of the kernel as well as the loading of a kernel 
module will result in a new map of kernel symbols.  
Figure 3 shows the output of running the kern_check 
program on a system infected with a kernel level rootkit.  
This program compares the sys_call with the one stored in 
a system file (/boot/System.map). 

 

 
Figure 3 - kern_check output of knarked system 

The output indicates that the addresses of eight 
sys_calls currently listed in the sys_call_table do not 
match the addresses for those sys_calls in the original map 
of the kernel symbols.  This map of kernel systems is 
available on the system as /boot/System.map.  We have 



 
 

 

conducted an in-depth analysis of how the knark kernel 
level rootkit modifies these system calls as part of our 
research, this analysis is available at [15].  It is 
theoretically possible for another kernel level rootkit to 
change the same eight system calls.  At present, there is no 
method of determining which kernel level rootkit has 
changed these system calls. 

3 CHARACTERIZING KERNEL LEVEL 
ROOTKITS 

 
We have looked at various programs that currently exist 

to detect rootkits.   These programs may indicate that 
some type of rootkit is installed on the target system but in 
most cases they fail to indicate the particular rootkit that is 
installed.  We have developed a methodology that will 
help to characterize a kernel level rootkits that overwrites 
the System Call Table and present this methodology.  This 
methodology will also work to detect the presence of 
Kernel Level Rootkits that modify specific system call 
code without changing the System Call Table.   

 

3.1 Archiving the compromised System Call 
code from kernel space. 
 

Our methodology depends on the ability to archive a 
copy of the system call code that currently exists in kernel 
memory for characterization analysis.  It is this archived 
code that we propose to use to be able to characterize 
kernel rootkit exploits.  We have developed a C program 
that can copy the system call code that is referenced by a 
start and end address and write the executable object code 
to a file for future reference.  We feel that this is 
significant because it allows the analyst to be able to 
retrieve of the code that is currently running in the system 
kernel.  Further, some types of kernel level rootkits such 
as knark do not remain resident in memory after the 
system is rebooted.   Our program allows for a copy of 
any suspicious system calls to be copied offline for follow 
on analysis prior to rebooting the system. 

This program that we have developed, called ktext, is  
listed in the appendix and is available at the website that 
we have previously referenced [15].  We have tested this 
program in the following manner.  We installed several 
kernel rootkits on several target systems.  We then ran the 
kern_check program on these systems.  With the knark 
kernel rootkit, the kern_check program informed us that 
eight system calls were being redirected.  The kern_check 
program also indicated the address within kernel space of 
these new redirected system calls (see figure 3).  We then 
used our program to make a copy of the system calls that 

were indicated as having been redirected.  Our analysis of 
the source code used to create this rootkit indicated that 
the new redirected system calls were being written 
sequentially into kernel memory.  This may not always be 
the case and it may be necessary to conduct an analysis of 
the object code to identify start and end address of the 
individual system calls.   

We then rebooted this system and checked the system 
with kern_check.  The kern_check program indicated that 
no system calls were being redirected on the target 
system.  We then reinstalled the knark kernel rootkit via 
its loadable kernel module.  A subsequent validation by 
the kern_check program indicates that the system is once 
again compromised by the knark program.  The new knark 
system calls are now located at different addresses within 
the kernel memory, as indicated by the output of the 
kern_check program.  The new instances of the eight 
modified system calls appear to be the same size as the 
system calls from the previous knark installation.  We 
then used these new addresses to make a subsequent copy 
of the system calls for comparison against our previously 
archived version of this compromised system call.   A 
comparison indicated that the files that we extracted are 
identical.  This check was only a proof of concept test to 
determine if we could extract the system call code from 
kernel memory for comparison.  We have observed 
similar results for the other rootkits that we analyzed. 

Other tools make copies of kernel code in order to 
detect if the kernel had been compromised. The Samhain 
tool, developed by Samhain Labs, has the ability to make 
a copy of the first eight bytes of each system call in order 
to detect if a jump has been inserted into the start of the 
original system call code [11].  The Samhain tool is a 
“whitehat” kernel level rootkit that is installed by the 
system administrator. This tool will only tell you that your 
kernel has been compromised but it will not identify the 
compromising rootkit.  The previously mentioned 
StMichael project will also modify the underlying kernel 
of the system that it is installed on.  Our methodology will 
not modify the underlying kernel and will make a copy of 
the entire system call for reference and analysis.  Our 
method will provide for a baseline to compare against 
subsequent rootkits in order to characterize the rootkit. 

The archived files can be examined with a tool such as 
bvi (binary visual editor) which is available on the Internet 
[12].  The output of bvi is the addresses of the data 
relative to the beginning of the file (far left), the actual 
data in  hexadecimal notation (center), and the data in 
ASCII format (far right) as indicated in Figure 4.  One can 
search within the file hexadecimal notation for the start 
and end of each system call by looking for the individual 
opcodes for pushing and popping the registers (each 



 
 

 

system call is a separate C code routine that will push and 
pop values on to the stack.  You can also identify the end 
of each system call routine by looking for the one byte 
return opcode (ret – C3 in the Intel x86 architecture [13]). 

 

 
Figure 4 - bvi analysis of getdents system call 

Figure 4 showed us the bvi output for the 
knark_getdents system call that replaces the original 
sys_getdents system call.  This system call is used by the 
kernel to output the contents of a directory. Kernel level 
rootkits will compromise this system call in order to hide 
files and directories on the target system. 

Analysis can be greatly simplified if the LKM code that 
is used to install the kernel rootkit is still available on the 
target system.  This LKM code will most likely still exist 
as an object file ( .o extension). It this file is available, it 
can be loaded into a program such as gdb (The GNU 
Debugger, available with most Linux and Unix 
distributions) in order to be disassembled.  Each system 
call can be disassembled using the disass <sys_call name> 
command.  What is significant to note about the output of 
this command is that there is a mapping to the output of 
the bvi program.   

There are 256 bytes of output displayed as hexadecimal 
opcode in the bvi screen.  The second to last byte is 89, 
which is the opcode for the move instruction (MOV) [13].  
This matches up with the last instruction displayed in 
Figure 5, which is the output from the gdb program.  The 
third to last symbol that is displayed by the bvi output is 
the C3 opcode.  The C3 opcode is the return (RET) 
command [13].  Each symbol call should have this 
command near the end of its associated opcode.  Even if 
the LKM opcode is not available, the approximate end of 
each system call can be found by locating the C3 opcode.  
A system call should only contain one return statement.   
If the LKM for the rootkit is available, then it is possible 
to do a side by side comparison of the bvi output to the 
gdb output to analyze the system call.  In any case, we 

believe that each particular rootkit should have a 
consistent implementation of its replacement system calls 
which can be used to classify that particular rootkit.  Our 
research thus far has proved this to be true and we will 
continue to research this area.   

 
Figure 5 - gdb output of getdents system call 

To summarize the steps to our methodology: 
 
1. Identify system calls that have changed. 
2. Determine the size to copy of each system call  
3. Conduct a byte by byte  analysis to disassembly this 

copied code 
4. Archive actual compromised system call 

code/checksum for future comparison 
 

3.2 Using Archived System Calls to detect a 
new class of system compromise 
 

At present, kernel level rootkits compromise a system 
in one of two methods.  The first method is to overwrite 
addresses in the system call table with the address of the 
malicious system call.  The second method is to create an 
entirely new system call table within kernel space and 
redirect all system calls to this new table which contains 
the malicious system call addresses.  Currently, there are 
no kernel level rootkits that attempt to compromise a 
system by overwriting the system call instructions with 
malicious code [14].   This would be very difficult to 
accomplish do to the fact that race conditions might occur 
while trying to overwrite the system calls.  However it 
may be possible. 

We propose that an archived copy of each system call 
can be produced based on the methodology that we have 
previously presented.  The addresses of the system calls 
are already available within the /boot/System.map file 
(available on the Linux Operating System).  A 



 
 

 

cryptographic checksum of these system calls can then be 
produced for future comparison against the system to 
ensure that the system calls have not been compromised.  
These archived system calls could also be used as baseline 
for further investigation. 

4 CONCLUSION 
 

We have presented a methodology to classify kernel 
level rootkits exploits that overwrite the system call table 
within this paper.   Two rootkits that have the same 
implementation of a compromised system call are the 
same rootkits. A rootkit that has elements of some 
previously characterized rootkit is a modification and a 
rootkit that has entirely new characteristics is new.   

We demonstrated the application of this methodology 
against a particular class of kernel rootkit exploits.   This 
can help to generate rootkit signatures to aid in the 
detection of these types of exploits.    This methodology 
will allow system administrators and the security 
community to better understand kernel level rootkits in 
order to plan and react accordingly.  

The adore rootkit is an example of this particular class 
of  kernel level rootkit.  In 2001 there were 1798 reported 
incidents of the adore rootkit in the United States [16].  A 
new version of this rootkit was recently released [17]. 

APPENDIX 
The ktext program: 
 
/* compile & usage statement */ 
 
/* GPL License */  
 
#include <stdio.h> 
#include <sys/mman.h> 
#include <syscall.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
 
extern int errno; 
 
int main(int argc, char **argv) { 
char * filename; 
char * file; 
 
/*usage first argument: output 
filename,second argument: start 
address,third argument: end address 
of data to copy from /dev/kmem  */ 
 

char * ktext; 
int fp, fp_out; 
long int sj_s_text, sj_e_text; 
ulong size; 
int error = 0; 
file = argv[1]; 
 
sj_s_text = strtoul(argv[2], NULL, 0); 
sj_e_text = strtoul(argv[3], NULL, 0); 
 
size = sj_e_text - sj_s_text; 
printf("sj_s_text: %x sj_e_text: %x 
size: %x\n", sj_s_text, sj_e_text, 
size); 
 
fp = open("/dev/kmem", O_RDWR, 0); 
printf("fp - open /dev/kmem: %d\n",fp); 
 
ktext = malloc(size); 
printf("ktext - malloc: %d\n", ktext); 
 
error = lseek(fp, sj_s_text, SEEK_SET); 
printf("error.1 - lseek: %d\n", error); 
perror("lseek"); 
 
error = read(fp, ktext, size); 
printf("error1 -fread ktext : %d\n", 
error); 
 
fp_out = creat(file, O_RDWR); 
printf("fp_out - fopen output: %d\n", 
fp_out); 
 
error = write(fp_out, ktext, size); 
printf("error - fwrite ktext: %d\n", 
error); 
 
close(fp_out); 
close(fp); 
}  
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