
Re-establishing Trust in Compromised Systems:

Recovering from Rootkits that Trojan the
System Call Table

Julian B. Grizzard, John G. Levine, and Henry L. Owen
{grizzard, levine, owen}@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332–0250, USA

Abstract. We introduce the notion of re-establishing trust in compro-
mised systems, specifically looking at recovering from kernel-level root-
kits. An attacker that has compromised a system will often install a set
of tools, known as a rootkit, which will break trust in the system as well
as serve the attacker with other functionalities. One type of rootkit is a
kernel-level rootkit, which will patch running kernel code with untrusted
kernel code. Specifically, current kernel-level rootkits replace trusted sys-
tem calls with trojaned system calls. Our approach to recover from these
type of rootkits is to extract the system call table from a known-good
kernel image and reinstall the system call table into the running ker-
nel. Building on our approach to current generation rootkits, we discuss
future generation rootkits and address how to recover from them.

1 Introduction

Modern computer systems are vulnerable to a wide variety of attacks. As attack-
ers develop methods to exploit these vulnerabilities, a large number of systems
are compromised. Compromises are costly to individuals, companies, govern-
ments, and other organizations in terms of data breach, downtime, adminis-
tration, and recovery. The number of new vulnerabilities discovered each year
is growing, and as such we believe system compromises will continue to be a
problem for the foreseeable future.

Much work has been done on preventing and detecting system compromises;
however, system compromises continue to be a problem. To date we have seen
little work done in terms of methods for recovering from system compromises.
Conventional wisdom states that one should wipe the system clean, reinstall,
and patch with the latest updates.

In this paper, we begin to explore alternatives to conventional wisdom in
terms of recovering from system compromises. In certain cases, it may not be
possible or desirable to shutdown the system to perform a fresh install. We study
kernel-level rootkit modifications to compromised systems and present tools to
recover from kernel-level rootkits. Our work focuses on the Linux kernel and Red

Hat Linux distribution. The results of our work should be applicable to other
operating systems, especially those on the x86 architecture.

We specifically discuss one of the most common tactics of modern kernel-level
rootkits: trojaning the system call table. When the system call table is trojaned,
even known good system binaries will not report true information about the
system. Our approach to recover from such attacks is to insert a trusted system
call table from a known good kernel image into the running kernel. This approach
gives control back to the system administrator and is the first step in recovering
from a root compromise in which a kernel-level rootkit has been installed.

Future generation kernel-level rookits may trojan other types of kernel code
instead of the system call table. We discuss possible directions for future root-
kits and alternative kernel penetration techniques. Our recovery approach of
bootstrapping trusted code into the kernel may be useful to recover from future
generation rootkits.

1.1 Definition of Compromised System

When an attacker has gained some level of permissions on a computer system,
the system is said to be compromised. If the attacker gains root access, the com-
promise is considered a root-level compromise. With root-level privileges, the
attacker can change any state within the system. The attacker owns the system.
The attacker can modify the system so that the original trusted reporting pro-
cesses no longer report accurate information. Some level of trust must be restored
to the system before all reporting information can be relied upon, depending on
how trust is broken.

Compromised System — If a system is compromised, then the following con-
ditions are true.

1. An attacker has gained some level of privileges on the system.
2. The attacker can read or modify some portion of the state within the system.

Root-level Compromised System — One specific class of compromised systems
are root-level compromises. If a system is compromised with root-level access,
then the following conditions are true.

1. An attacker has gained unlimited access to the system.
2. Any state within the system can be read or modified by the attacker.
3. Trust can be broken in the system.

1.2 Definition of Rootkit

A rootkit may be considered as a form of a Trojan Horse as discussed in [1].
Once an attacker has compromised a system, he or she often use a rootkit as a
tool to covertly retain access to that system. A rootkit can contain utilities to
allow the attacker to retain access, hide processes and activities, and break trust
in the local system reporting and querying functions.

We classify rootkits into user-level and kernel-level rootkits. A user-level
rootkit will alter operating system tools at the user level (which usually involves
adding or modifying system binaries such as /bin/login). A kernel-level rootkit
will alter or insert kernel-space executing code (e.g. system calls).

1.3 Definition of Trust

Trust can be defined as the level to which a user believes a computer system
executes as specified and does nothing else. If a compromise occurs on that
computer system and the user discovers it, the level at which the user trusts
the system is significantly lessened. The lowered level of trust is understandable
because, for example, a rootkit may be installed on the compromised system such
that file listing commands hide certain files and thus not execute as specified.

1.4 Overview and Organization

The rest of our paper is outlined as follows. Section 2 discusses the problem of
kernel-level rootkits and previous work. Section 3 discusses current generation
rootkits that modify the system call table. Section 4 describes our approach for
recovering from current generation rootkits. Section 5 shows results of applying
our techniques to real-world rootkits. In Section 6 we look at future generation
rootkits in terms of their penetration techniques and kernel targets to trojan.
Further, we discuss a concept to strengthen our algorithm described in Section
4. Finally, we discuss our conclusions and future work in Section 7

2 Motivation

With the proliferation of exploits targeted to today’s computer systems, an at-
tacker has the ability to compromise a number of systems. Once an attacker has
compromised a system, he or she will want to retain access to that system even
if the original security hole is patched. In order to retain access to a compro-
mised system, the attacker will often install a rootkit onto the target system.
The rootkit will add a backdoor onto the target system that the attacker can
use to reenter the system at a later time. We set up a Red Hat 6.2 system on
the Georgia Tech honeynet [2], and within a matter of days an attacker had
compromised the box and installed a kernel-level rootkit, r.tgz, on the system.

If the system administrator notices that an attacker has compromised the
system, the administrator will immediately take pervasive actions to block the
attacker from reentering the system. However, the attacker may have installed
a rootkit to hide the attacker’s activities, files, and backdoor entry point. To
accomplish this goal, the rootkit will break trust in system reporting facilities
(e.g. /bin/ls, /usr/bin/top, /sbin/lsmod).

With a user-level rootkit, the system administrator can restore trust in the
system by using known good utilities (e.g. /mnt/cdrom/ls, /mnt/cdrom/top,
/mnt/cdrom/lsmod). A kernel-level rootkit does not replace binaries but rather

replaces running kernel code. We are not aware of any current methodology
for restoring trust in a running system in which a kernel-level rootkit has been
installed except for a complete reinstallation.

2.1 Related Work

Thimbleby, Anderson, and Cairns developed a mathematical framework to model
Trojans and viruses [3]. They discuss a virus that could infect a system querying
program in such a way that the querying program itself would be unable to
detect that it was infected. This recursive infection leads to the idea behind
kernel-level rootkits. When a kernel-level rootkit is installed, tools that check to
see if a rootkit is installed are relying on an infected program, the kernel.

Recent research has been conducted developing a methodology for charac-
terizing rootkits [1, 4, 5]. The methodology to characterize rootkits involves de-
termining the ∆ between a baseline system and a system compromised with a
kernel-level rootkit. The ∆ is used to characterize rootkits based on checksums,
number of files replaced, number of files added, user level verses kernel level,
penetration into the kernel, and so forth.

Government organizations have begun to investigate rootkits. The National
Infrastructure Security Co-ordination Centre for the United Kingdom has re-
cently published a report on Trojans and rootkits that discusses detection, reme-
diation, and prevention of rootkits [6]. Their report describes Trojans as Remote
Access Tools (RATs) that provide the attacker with a backdoor into the com-
promised system. The report discusses some of the functionality of RATs, which
includes: monitoring system activities (i.e. watch users keystrokes and monitor
users), monitor network traffic, use system resources, modify files, relay email
(i.e. spam).

Other work has been conducted towards detecting and preventing kernel-level
rootkits. Kim and Spafford show how a file system integrity checker, tripwire,
can be used to monitor files for corruption, change, addition, and deletion [7].
In addition to other uses, tripwire can notify system administrators that system
binaries have changed. Tripwire must establish a baseline for a known good file
system. To establish a baseline, tripwire takes a hash (e.g. MD5, CRC, Snefru) of
the files at a known good point. The baseline can be used for comparison at later
points in time. A binary-level rootkit will replace system binaries, which will set
off the “trip wire” and alert the administrator. However, a rootkit designer can
counteract tripwire by breaking trust in the reporting tools upon which tripwire
relies.

The open source and hacker communities have developed various tools to
detect and prevent rootkits, which include: chkrootkit [8], kern check [9], Check-
IDT [10], and Saint Michael [11]. The chkrootkit tool is a script that checks
systems for signs of rootkits. The chkrootkit script can detect many rootkits in-
cluding both user-level rootkits and kernel-level rootkits, however some rootkits
may evade detection. The kern check tool is used to detect kernel-level root-
kits. The kern check tool compares the addresses of system calls as defined in
the System.map file, generated at kernel compile time, to the current addresses

of system calls. The CheckIDT tool is a user-level program that can read and
restore the interrupt descriptor table, of which the 0x80th entry points to the
system call handler. Saint Michael is a kernel module that monitors the ktext
(kernel code in memory) for modifications and attempts to recover from any
modification to running kernel code. Saint Michael, however, must be installed
prior to a system compromise and is not always successful.

2.2 Broader Scope

Intrusion prevention and intrusion detection have not slowed the growth of com-
puter compromises to an acceptable rate. Research is drifting towards intrusion
tolerance, and one element of intrusion tolerance is repair and recovery. In this
paper, we begin to explore recovering from system compromises. There may be
certain circumstances where the traditional format and reinstall is undesirable
such as military systems, enterprise servers, or large clusters of machines.

We are also motivated by the need to perform forensics analysis on com-
promised systems. When a system is compromised, it is important to gather
evidence that can be used for legal purposes.1 It is important to understand the
attack in order to prevent future attacks. Much of the evidence in a compromised
system might only be resident in memory, so the evidence must be recovered be-
fore powering off the machine. In order to retrieve accurate information in the
system, trust must be restored.

Although our work focuses on methods to recover operating system struc-
tures from system compromises, in many cases the most damaging part of a
compromise is the data on the system that was compromised. This data can
include passwords, credit cards numbers, keys, or other sensitive information.
Our work does not solve the problem of data compromise, but we think it is an-
other step in that direction. We envision self-healing systems that automatically
detect system compromises and halt all attacker activity as quickly as possible
in order to minimize the damage done.

3 Analysis of Current Generation Kernel-Level Rootkits

Kernel-level rootkits are rootkits that modify or insert code that runs in kernel
mode. These types of rootkits may include user-level components but must have
some functionality that resides at the kernel level. From our experience of ex-
amining rootkits, we characterize kernel-level rootkits based on two additional
characteristics: Penetration into the kernel and Modification of the system call
table.

3.1 Penetration

In terms of Penetration, we classify current generation kernel-level rootkits into
two types based on their technique used for modifying kernel code. The subclas-
sifications of kernel-level rootkits are:
1 From discussions with Office of Information Technology personnel at Georgia Tech.

– Module — Kernel-level rootkit that enters malicious code into the kernel
by way of a loadable kernel module (LKM). The LKM, once inserted, will
usually hide itself from system reporting facilities (i.e. /sbin/lsmod). We
consider these type of rootkits generation I kernel-level rootkits.

– User — Kernel-level rootkit that patches running kernel code with malicious
code from a user-space process. Usually, this type of rootkit will access ker-
nel memory through the /dev/kmem file. The Linux kernel provides access
to kernel memory to user-space processes through the /dev/kmem file. We
consider these type of rootkits generation II kernel-level rootkits.

3.2 Modification

In addition, to classifying kernel-level rootkits in terms of penetration, we also
classify rootkits in terms of how they modify the system call table, denoted
Modification. Below are the subclassifications of Modification:

– Entry Redirection — Redirects individual system calls within the system call
table. Modifies original system call table.

– Entry Overwrite — Overwrites individual system call code. Does not modify
original system call table.

– Table Redirection — Redirects the entire system call table. Does not modify
original system call table.

Figure 1(a) shows how a kernel-level rootkit can redirect individual system
calls within the system call table (SCT). The picture represents kernel memory
after a kernel-level rootkit with Entry Redirection has been installed on the
system. In Figure 1(a), the sys fork system call is unmodified. Notice, however,
that system calls number three and number four point to Trojan system calls.
The trusted sys read and sys write are still resident in memory, but there are
no references to them. The system call table now points to trojan read and
trojan write. Any binary executable that relies upon the system calls sys read
and sys write will receive untrusted information from the trojaned system calls.

Figure 1(c) represents kernel memory after a rootkit with Entry Overwrite
has been installed. Again, the sys fork system call is unaltered. Notice, however,
that the two system calls sys read and sys write have been overwritten. The
actual code for the system calls has been overwritten as opposed to the corre-
sponding table entry that references the system calls. The system call table itself
is unaltered with this type of rootkit. We have not seen this type of rootkit but
speculate that one could be constructed. The advantage of this type of rootkit is
that a program such as kern check [9] would not be able to detect the presence
of the rootkit as kern check only checks the system call table, but that is only a
short-lived advantage as new tools are developed.

Figure 1(b) represents kernel memory after a rootkit with Table Redirection
has been installed. The picture depicts kernel memory for the i386 architecture
and the Linux kernel. Within the Linux kernel code exists a table called the In-
terrupt Descriptor Table (IDT) that points to kernel handlers for each interrupt.

Kernel Memory

<System Code>

sys_fork

<System Code>

sys_read

<System Code>

sys_write

<Untrusted Code>

trojan_write

SCT

...

...
#2

#3

#4

<Untrusted Code>

trojan_read

(a) Redirect individual system call
pointers

SCT Ref.

...

...
#2

#3

#4

system_call

<Untrusted Code>

...

...
...

...

IDT

0x80

...

...
#2

#3

#4

SCT

Trojan SCT

Kernel Memory

(b) Redirect pointer to entire system
call table

Kernel Memory

<System Code>

sys_fork

<Untrusted Code>

sys_read

<Untrusted Code>

sys_write

SCT

...

...
#2

#3

#4

(c) Overwrite individual system call code

Fig. 1. Current rootkit methods to trojan system call table

The 0x80th vector is a software interrupt that points to the system call table.
All user processes invoke a software interrupt 0x80 in order to call a system call
[12]. When software interrupt 0x80 is invoked, the interrupt handler for inter-
rupt 0x80 is called, which is the system call handler. The system call handler
takes arguments from a user-space process and invokes the requested system
call. The system call handler contains a reference to the system call table, which
is used to lookup requested system calls. This reference can be changed in order
to redirect the entire system call table.

As Figure 1(b) shows, the entire system call table has been redirected to a
Trojan system call table. The trojan system call table usually contains many of
the same entries as the original system call table but with a few key system calls
replaced with trojan system calls. We have not shown how the Trojan system
call table points to system calls in Figure 1(b) as it is similar to Figure 1(a).

3.3 Sample Rootkits

Rootkit Penetration Modification

heroin Module Entry Redirection

knark Module Entry Redirection

adore Module Entry Redirection

sucKIT User Table Redirection

zk User Table Redirection

r.tgz User Table Redirection

Table 1. Sample classification of kernel-level rootkits

Table 1 shows a sample listing of kernel-level rootkits that we have classified
in terms of their characteristics. We show three rootkits that penetrate kernel
space through a Module and use Entry Redirection to trojan the system call
table. The heroin rootkit is one of the earliest known kernel-level rootkits and
is simply a kernel module that redirects a few key system calls. The knark and
adore rootkits are other module based rootkits that redirect system call table
entries.

The second group of rootkits listed are sucKIT, zk, and r.tgz. These root-
kits all use table redirection and access kernel memory through the /dev/kmem
file. The sucKIT rootkit appears to be one of the pioneering rootkits for Table
Redirection. The r.tgz rootkit was captured on a honeynet [13].

We have not seen any kernel-level rootkits that use Table Redirection and
are also kernel modules. Similarly, we have not seen any kernel-level rootkits
that penetrate the kernel from user space and also use Entry Redirection. We
speculate that different combinations of rootkit characteristics are possible but
see no motivation to build them. In addition, we also speculate that future
kernel-level rootkits may redirect the software interrupt handler or the entire
interrupt descriptor table, but have not seen any rootkits to date that use this
technique. Finally, we have not seen any rootkits that use Entry Overwrite to
trojan system calls.

4 Recovery by Bootstrapping Trust into the Running
Kernel

Since kernel-level rootkits modify the system call table, the system call table
must be repaired in order to recover from a kernel-level rootkit. Kernel-level
rootkits overwrite portions of the kernel memory, so some information is lost.
However, all of the kernel code can be found elsewhere. In Linux based systems,
all that is needed is a copy of the kernel image, vmlinux. The kernel image
contains the system call table and system calls.

Our approach to bootstrap trust into the running kernel is to, essentially,
build a whitehat kernel-level rootkit. Our techniques is similar to sucKIT deriva-
tive rootkits. We bootstrap a trusted system call table into the running kernel
and redirect the entire system call table to our trusted system call table. We
strip out a trusted system call table from a known good kernel image, which is
on known good media. Below, we discuss our algorithm, implementation, and
tools.

4.1 Algorithm

The algorithm has five steps. We use some of the techniques of the sucKIT
rootkit.

1. For each system call, allocate kernel memory for the system call and copy a
trusted version of the system call into the allocated space. The offset for x86
call instructions within each system call must be adjusted when copying the
system call to a new location in memory.

2. Allocate kernel memory for the system call table and set the entries of the
system call table to point to the trusted system calls from Step 1.

3. Allocate kernel memory for the system call handler and copy a trusted sys-
tem call handler into the memory. Note that the system call handler should
reference the newly allocated trusted system call.

4. Query the idtr register to locate the interrupt descriptor table.
5. Set the 0x80th entry in the interrupt descriptor table to the newly allocated

system call handler.

Note that the trusted system calls will come from a trusted image of the
kernel. In addition to the sucKIT rootkit’s redirection of the entire system call
table, we also redirect the 0x80th entry of the interrupt descriptor table, the
system call handler. The reason for this redirection is that we speculate future
rootkits may redirect the system call handler and our goal is to rely on as little
trust in the system as possible.

It is interesting to note that machine code in the Linux kernel cannot sim-
ply be copied from one memory location to another byte by byte. Kernel code
compiled with the gcc compiler has many x86 call instructions. One form of the
call instruction specifies a relative offset to the target. When moving kernel code
around in memory, these call instructions must be modified by adjusting the rel-
ative offset. This depends entirely on where the call instruction and target are
located in memory. Additionally, a known good hash of the code being copied
will no longer be valid after modifying the offset value.

4.2 Implementation

We have developed our tools for the i386 architecture. The target system for
development is Red Hat 8.0 with the default Linux kernel 2.4.18-4. The instal-
lation includes the normal development tools and the Linux kernel sources. Our

struct idtr idtr;
struct idt idt80;
ulong old80;
/* Pop IDTR register from CPU */
asm("sidt %0" : "=m" (idtr));
/* Read kernel memory through /dev/kmem */
rkm(fd, &idt80, sizeof(idt80), idtr.base +

0x80 * sizeof(idt80));
/* Compute absolute offset of
* system call handler for kmem */

old80 = idt80.off1 | (idt80.off2 << 16);

Fig. 2. Source code to find address of system call handler

implementation is a whitehat kernel-level rootkit that can be classified as a User
rootkit that performs Table Redirection. Below we describe a few aspects of the
implementation.

In order to strip the system calls out of a Linux kernel image, we use code
from the gdb debugger. The gdb debugger has the ability to parse binaries and
strip out functions, which in our case are system calls. Our implementation strips
all of the system calls from the given kernel image, vmlinux-2.4.18-14, and feeds
them to our whitehat kernel-level rootkit, recover kkit.

Our code uses Table Redirection in order to bootstrap trusted code into the
running kernel. We use sucKIT’s technique to locate the address of the system
call handler. Once we have the address of the system call handler, we can parse
the system call handler code and locate the reference to the system call table.
By replacing the reference to the system call table so that it points to a trusted
system call table, trust can be re-established. The code for locating the system
call table can be seen in Figure 2. The key line is the assembly instruction

{asm("sidt %0" : "=m" (idtr));}

This assembly instruction copies the contents of the idtr register into the idtr
variable. The absolute offset of the interrupt descriptor table can be calculated to
locate the interrupt descriptor table. The 0x80th entry of the interrupt descriptor
table points to the system call handler.

Since our implementation is a User type implementation, a tricky part of the
implementation becomes allocating kernel memory. We use the same technique
that the sucKIT rootkit uses. Figure 3 shows the source code used to wrap kmal-
loc(), the kernel memory allocator, into a system call. In the Figure, KMALLOC
is the virtual address of the kmalloc() function within kernel space. Our code
first locates the current system call table by reading the reference to the current
table from the system call handler. Then an unused system call, sys olduname,
is taken over and replaced with a system call that we will call sys kmalloc. Now
a user-space program can allocate kernel memory simply by issuing the system
call sys kmalloc.

Using the techniques described above, we have implemented a whitehat
rootkit called recover kkit. Our implementation follows the algorithm described
above. Below we discuss our tools.

#define rr(n, x) ,n ((ulong) x)
#define __NR_oldolduname 59
#define OURSYS __NR_oldolduname
#define syscall2(__type, __name, __t1, __t2) \

__type __name(__t1 __a1, __t2 __a2) \
{ \

ulong __res; \
__asm__ volatile \
("int $0x80" \
: "=a" (__res) \
: "0" (__NR_##__name) \
rr("b", __a1) \
rr("c", __a2)); \

return (__type) __res; \
}
#define __NR_KMALLOC OURSYS
static inline syscall2(ulong, KMALLOC, ulong, ulong);

Fig. 3. Source Code - Kmalloc as a System Call

4.3 Tools

Including our whitehat rootkit, we have implemented a suite of tools that can be
used to check for and recover from kernel-level rootkits. Our tools can be found
on our website [14]. The read sctp tool reads the address of the current system
call table and can be used to compare the actual system call addresses to the ones
found in the System.map file. Our approach differs from kern check’s method
in that our program looks up the actual system call table as referenced in the
running system call handler. Another tool we created is called ktext. The ktext
tool can be used to capture portions of kernel memory in the running kernel.
We have used the ktext tool to determine a ∆ for kernel-level rootkits [5]. Other
tools provide the ability to dump system call table entries to a file and write
individual system call table entries to kernel memory. Finally, the recover kkit
tool can be considered a whitehat kernel-level rootkit that can be used to recover
from blackhat kernel-level rootkits.

5 Results on Current Generation Rootkits

In order to test our whitehat kernel-level rootkit, we have selected three black-
hat kernel-level rootkits to recover from. We have chosen to test knark, sucKIT,
and r.tgz. These three rootkits represent kernel-level rootkits that penetrate the
kernel from both user space and from a kernel module. Also, our tools are tested
against both Entry Redirection and Table Redirection type rootkits. Finally, we
also test our tool against r.tgz because it represents a rootkit that was captured
in the wild on the Georgia Tech Honeynet. Recovering from the r.tgz demon-
strates how our research can be applied to real-world scenarios. Figure 4 shows
the results of our testing.

[root@h1 cd]# insmod ./knark.o
Warning: loading knark.o will taint the
kernel: no license See
http://www.tux.org/lkml/#export-
tainted
for information about tainted modules
Module knark loaded, with warnings
[root@h1 cd]# ./hidef /bin/rootme
hidef.c by Creed @ #hack.se 1999 <creed
@sekure.net> Port to 2.4 by Cyberwinds
#Irc.openprojects.net 2001
[root@h1 cd]# ./ls /bin/root*
ls: /bin/root*:
No such file or directory
[root@h1 cd]# ./recover kkit
Trust has been Re-established!
[root@h1 cd]# ./ls /bin/root*
/bin/rootme

(a) Recovering from knark

[root@h2 cd]# ./sk
/dev/null RK Init: idt=0xc037d000,
sct[]=0xc0302c30,
kmalloc()=0xc0134fa0, gfp=0x0
Z Init: Allocating kernel-code
memory... Done,
12747 bytes, base=0xc8090000
BD Init: Starting backdoor daemon...
Done, pid=1435
[root@h2 cd]# ./ls /sbin/init*
/sbin/init
/sbin/initlog
[root@h2 cd]# ./recover kkit
Trust has been Re-established!
[root@h2 cd]# ./ls /sbin/init*
/sbin/init
/sbin/initlog
/sbin/initsk12

(b) Recovering from sucKIT

[root@h3 cd]# ./all
[===== INKIT version 1.3a, Aug 20 2002 <http://www.usg.org.uk> =====]
[====== (c)oded by Inkubus inkubus@hushmail.com> Anno Domini, 2002 ======]
RK Init: idt=0xc027a000, sct[]=0xc0248928, kmalloc()=0xc0121b88, gfp=0x15 Z Init:
Allocating kernel-code memory...Done,
13147 bytes, base=0xc9498000 BD Init: Starting backdoor daemon...Done, pid=1213
[root@h3 cd]# ./ps -p 1213
PID TTY TIME CMD
[root@h3 www]# ./recover kkit
Trust has been Re-established!
[root@h3 cd]# ./ps -p 1213
PID TTY TIME CMD
1213 ? 00:00:00 all

(c) Recovering from r.tgz

Fig. 4. Testing recover kkit Tool on Three Kernel-Level Rootkits

5.1 Recovering from knark

In our first scenario, we have installed knark on a Red Hat 8.0 system with a
Linux 2.4.18 kernel. The results can be seen in Figure 4(a). The first step is to
install knark. Since knark is loaded as a kernel module, we insert knark with the
insmod command. The kernel prints a message warning that knark.o does not
have an agreeable license. The second step is to hide a binary, which we have
placed in the /bin directory, called rootme. The rootme binary is part of the
knark rootkit and is used to execute binaries with root-level permissions from a
regular user account. The hidef utility is part of the knark rootkit and is used
to hide utilities. In the third step, we list files in the /bin directory that begin
with root. No files are shown indicating that our system cannot be trusted. The

fourth step is to install our trusted system call table with our tool recover kkit.
We use a read-only cdrom to run our tools. Now notice that upon listing files
again, the file rootme is seen. Trust has been re-established in the compromised
host.

5.2 Recovering from sucKIT

In our second scenario, we have installed sucKIT on a Red Hat 8.0 system. The
results can be seen in Figure 4(b). The steps are similar to that of knark. We
install the rootkit, show that some files are hidden when running the ls utility,
restore trust, and finally show that the hidden files appear. The sucKIT rootkit
hides files that have a certain extension, in our case “sk12”. The initsk12 file is
used in coordination with the init file to load sucKIT upon a reboot. Trust has
been re-established in a system that has been compromised with a kernel-level
rootkit that performs Table Redirection.

5.3 Recovering from r.tgz

In our third scenario, we have installed r.tgz on a Red Hat 6.2 system. The
results can be seen in Figure 4(c). This rootkit is an example of a real-world
scenario. In our scenario, an attacker has compromised the system and starts a
Trojan process with the all utility. The all utility is part of the r.tgz rootkit.
Initially, the process is hidden, as seen by the first ps execution. Then, we install
our trusted system call table and issue the ps command again. You can see that
this time the hidden process shows up. We have successfully re-established trust
in a compromised host that was compromised in the wild.

6 Future Generation Rootkits and Recovery

6.1 Possible Penetration Techniques

We have discussed current generation rootkit kernel penetration techniques in
Section 3.1. In this section, we discuss kernel penetration techniques that we
have not seen in current rootkits while studying existing rootkits. Based on our
experience, we speculate that future generation rootkits may use these techniques
as more security features are added to kernels to prevent current generation
rootkits (i.e. do not allow module loading or access via /dev/mem). Some of these
techniques have been discussed in hacker communities; perhaps the techniques
are already in use, but we have not seen any evidence to sustain such claims.

– DMA — These type of kernel-level rootkits could patch running kernel code
with malicious code by programming an attached hardware device to use
direct memory access (DMA) to modify kernel code. The concept was intro-
duced in [15], but we have not seen any implementations.

– Swapped-out Pages — With root-level access, the attacker has raw access
attached hard disks. Memory pages are swapped to the hard disk when
memory becomes full. An attacker could use raw hard disk I/O to modify
swapped out pages in order to penetrate the kernel. Normally the kernel
code is never swapped to the disk, but an attacker could use indirect means
to penetrate the kernel through swapped out pages.

– Local Image — The kernel image resides as a binary file on the file system.
The attacker can modify the kernel image on disk and replace trusted code
with trojaned code. The next time the system is rebooted, the trojaned
kernel image will be loaded into memory, thus accomplishing the attacker’s
goal without modifying the running kernel.

– Distributed Image — The beginning of the chain of trust starts at the source
code and binary distributors. An attacker could compromise a kernel image
before it is ever installed on the system (i.e. replace code or binary files with
trojans before the kernel is distributed). As Thompson points out, one must
“trust the people who wrote the software,” or in this case trust the people
who distribute the kernel [16].

6.2 Kernel Targets for Kernel-Level Rootkits

The first kernel-level rootkits developed have focused on trojaning the system
call table. The system call table is the gateway from user space to kernel space,
and so is a natural target and easily trojaned. Tools are being developed to detect
and counter these types of rootkits including our tools that allow recovery from
a certain class of kernel-level rootkits. As such developments continue, the arms
race is escalated. Attackers will continue to develop new means of trojaning the
kernel. Below we outline such targets for kernel-level rootkits.

– System Call Table and Interrupts — Section 3 gives an extensive discussion
of how the system call table is trojaned. Many widely examined rootkits use
this means of trojan when targeting the kernel. The interrupt subsystem is
a general target of the kernel as interrupts are often serviced on behalf of
processes.

– Redirecting Core Kernel Functionality — Core kernel functionality is a tar-
get of kernel-level rootkits. Examples include the scheduler, process handler,
authorization mechanisms, and the virtual file system mechanisms. The lat-
est adore rootkit, adore-ng, targets the virtual file system [17].

– Redirecting Extremity Functionality — Extremity functionality includes sub-
systems of the kernel such as the network drivers, hard disk controllers,
network stack, and so forth. For example, a rootkit may want to modify
the network stack so that the kernel listens for incoming requests from the
attacker, unbeknownst to the system administrator.

– Modifying Kernel Data Structures — Finally, the attacker may modify the
kernel data structures in addition or instead of modifying the kernel code.
For example, a kernel module can be hidden from the lsmod command by re-
moving it from the linked list that contains currently loaded kernel modules.
This specific technique is already in use today.

6.3 Using a Trusted Immutable Kernel Extension for Recovery

Our algorithm described in Section 4 works well for recovering from system call
table modifications but relies on one assumption that must be addressed. The
algorithm assumes that a core level of trust remains intact in the system that
would allow our program to function as expected. As long as the rootkit instal-
lation is well understood and known to be in accordance with our assumption,
the method is valid. However, we also address the case in which the full extent
of the rootkit is unknown.

Our solution to this problem is a Trusted Immutable Kernel Extension (TIKE)
as introduced in [18]. TIKE is an enabling extension that can be used to ensure
a trusted path exists within the system even if a kernel-level rootkit is installed.
One approach to building TIKE is through virtualization. The production guest
system is isolated from the host operating system. The production system may
be attacked, but we assume the host operating system is inaccessible from the
guest operating system. Therefore, our recovery algorithm can be carried out on
the host system, with some modifications, in order to incontestably re-establish
trust in the compromised system.

Techniques similar to our recovery method for system call tables can be
used for many classes of future generation kernel-level rootkits. Our approach is
summarized as follows: For the given kernel function redirection, copy a known
good function from a known good kernel image and redirect the running kernel
function to the known good function. Furthermore, since the level of trust that
is broken may be unknown, the recovery should take place through a mechanism
such as TIKE. The technique must be applied to the entire chain of trust in
order to be certain that trust has been restored. This technique does not cover
all possibilities, but does work for a given class of compromises. For example,
rootkits that modify kernel data structures are more difficult to recover from.

7 Conclusions and Future Work

We have studied how trust can be broken in a system, specifically when a kernel-
level rootkit is installed. We have applied a methodology to characterize current
generation kernel-level rootkits in order to determine how to recover from them.
Kernel-level rootkits can be classified in terms of their Penetration method and
in terms of their system call table Modification method. Modern kernel-level
rootkits can Penetrate the kernel from user space and use Table Redirection in
order to install a trojaned system call table.

After providing an understanding of kernel-level rootkits, we introduced tools
that can be used to recover from kernel-level rootkits. Our tool strips a known
good system call table from the provided kernel image and bootstraps the trusted
system call table into the running kernel. We then looked at future genera-
tion rootkits, further strengthened our algorithm with TIKE, and introduced a
methodology to recover from future generation rootkits.

We have begun to explore the notion of re-establishing trust in compro-
mised systems. We have shown that trust can be restored to a system, even if

a kernel-level rootkit has been installed. Continued work will include applying
our algorithm to more real-world compromises on the Georgia Tech honeynet to
help validate the approach. We will also extend our work to cover more than just
the system call table towards the entire system in order to establish techniques
for self-healing computer systems. Our current work has focused on the Linux
operating system, but future work will look into how our methods can be applied
to other widely used operating systems.

References

1. Levine, J., Culver, B., Owen, H.: A methodology for detecting new binary rootkit
exploits. In: Proceedings IEEE SoutheastCon 2003, (Ocho Rios, Jamaica)

2. : Georgia Tech honeynet research project. http://users.ece.gatech.edu/~owen/
Research/HoneyNet/HoneyNet_home.htm (2004)

3. Thimbleby, H., Anderson, S., Cairns, P.: A framework for modelling trojans and
computer virus infection. The Computer Journal 41 (1998) 445–458

4. Levine, J., Grizzard, J., Owen, H.: A methodology to detect and characterize kernel
level rootkit exploits involving redirection of the system call table. In: Proceedings
of Second IEEE International Information Assurance Workshop, IEEE (2004) 107–
125

5. Levine, J.G., Grizzard, J.B., Owen, H.L.: A methodology to characterize kernel
level rootkit exploits that overwrite the system call table. In: Proceedings of IEEE
SoutheastCon, IEEE (2004) 25–31

6. : Trojan horse programs and rootkits. Technical Report 08/03, National Infras-
tructure Security Co-Ordination Centre (2003)

7. Kim, G.H., Spafford, E.H.: The design and implementation of tripwire: A file
system integrity checker. In: ACM Conference on Computer and Communications
Security. (1994) 18–29

8. : The chkrootkit website. http://www.chkrootkit.org/ (2004)
9. : kern check.c. http://la-samhna.de/library/kern_check.c (2003)

10. kad (pseudo): Handling interrupt descriptor table for fun and profit, issue 59,
article 4. http://www.phrack.org (2002)

11. : WWJH.NET. http://wwjh.net (2003)
12. Bovet, D., Cesati, M.: Understanding the Linux Kernel. O’Reilly&Associates,

Sebastopol, CA (2003)
13. Levine, J.G., Grizzard, J.B., Owen, H.L.: Application of a methodology to charac-

terize rootkits retrieved from honeynets. In: Proceedings of 5th IEEE Information
Assurance Workshop. (2004) 15–21

14. : Re-establishing trust tools. http://users.ece.gatech.edu/~owen/Research/

trust_tools/trust_tools.htm (2003)
15. sd (pseudo), devik (pseudo): Linux on-the-fly kernel patching without lkm, issue

58, article 7. http://www.phrack.org (2001)
16. Thompson, K.: Reflections on trusting trust. Commun. ACM 27 (1984) 761–763
17. Labs, S.: Subverting the kernel. http://la-samhna.de/library/rootkits/

basics.html (2004)
18. Grizzard, J.B., Levine, J.G., Owen, H.L.: Toward a trusted immutable kernel exten-

sion (TIKE) for self-healing systems: a virtual machine approach. In: Proceedings
of 5th IEEE Information Assurance Workshop. (2004) 444–445

